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Our study explored the prospects and limitations of using machine-learning software to score in-
troductory biology students’ written explanations of evolutionary change. We investigated three
research questions: 1) Do scoring models built using student responses at one university function
effectively at another university? 2) How many human-scored student responses are needed to build
scoring models suitable for cross-institutional application? 3) What factors limit computer-scoring
efficacy, and how can these factors be mitigated? To answer these questions, two biology experts
scored a corpus of 2556 short-answer explanations (from biology majors and nonmajors) at two
universities for the presence or absence of five key concepts of evolution. Human- and computer-
generated scores were compared using kappa agreement statistics. We found that machine-learning
software was capable in most cases of accurately evaluating the degree of scientific sophistication
in undergraduate majors’ and nonmajors’ written explanations of evolutionary change. In cases in
which the software did not perform at the benchmark of “near-perfect” agreement (kappa > 0.80),
we located the causes of poor performance and identified a series of strategies for their mitigation.
Machine-learning software holds promise as an assessment tool for use in undergraduate biology
education, but like most assessment tools, it is also characterized by limitations.

INTRODUCTION

In large introductory biology classes throughout the United
States, multiple-choice (MC) formats typify both formative
assessments (e.g., clicker questions, concept inventories) and
summative tests (e.g., midterm and final exams; see Wood
[2004] and Smith et al. [2008]). While there is little doubt
among educators that MC formats in general are capable of
providing cost-effective, reliable, and valid inferences about
student knowledge and misconceptions in many content ar-
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eas, not all types of student learning outcomes may be mea-
sured using MC formats (reviewed in American Association
for the Advancement of Science [AAAS, 2011] and Nehm et al.
[in press]). Moreover, despite generating useful assessment
information, MC tests may also produce unintended, and
rarely considered, negative consequences for learners, such as
the generation of false knowledge (Mandler and Rabinowitz,
1981; Roediger and Marsh, 2005; Butler et al., 2006; Kang et al.,
2007). Additionally, many MC tests are most conducive to
detecting novice or expert (incorrect or correct) models of
student thinking, whereas a large body of work in cognitive
science indicates that many students construct mixed mod-
els of naı̈ve and informed scientific information as they learn
(e.g., Vosniadou [2008]; Opfer et al. [2011]); right or wrong
options—the staple of MC tests—may limit the valid mea-
surement of student learning gains (Nehm and Schonfeld,
2008; Nehm and Ha, 2011; Neumann et al., 2011).

Collectively, these and many other limitations of MC for-
mats should motivate biology educators to 1) develop and
deploy a more diverse array of high-quality assessment meth-
ods and 2) measure a more expansive range of student
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knowledge, skills, and learning outcomes (e.g., AAAS [2011,
p. 17]; Nehm et al. [in press]). The purpose of our study was to
investigate the prospects and limitations of implement-
ing new assessment methods in introductory biology—
specifically, computerized scoring of short-answer scientific
explanations. Can successful application of these innovative
methods at one university be generalized, and if not, why
not? What are the implications for adopting computerized-
scoring programs as assessment tools in introductory biology
and biology education research?

BACKGROUND

Open-Response Assessments in Biology Education
Educational researchers emphasize that assessments should
be built upon and aligned with what we know about student
learning and cognition (National Research Council [NRC],
2001). One major advance in our understanding of student
learning is that learners do not progress directly from novice
to expert levels; rather, the pathways of knowledge growth
in biology (and other domains) are highly inefficient and in-
volve integrating scientific ideas into naı̈ve knowledge frame-
works, generating heterogeneous mental models, or building
coexisting models (Nehm and Schonfeld, 2008, 2010; Vos-
niadou, 2008; Kelemen and Rosset, 2009; Evans and Lane,
2011). These so-called mixed or synthetic models may persist
for long periods of cognitive development (Vosniadou, 2008)
and even through the years of college instruction (Nehm and
Reilly, 2007).

If our biology assessments are intended to measure
progress in student reasoning and build upon findings from
educational research, our assessment items (whether forma-
tive or summative, MC or open response) must permit at least
three general reasoning categories as options: 1) exclusively
naı̈ve answer choices; 2) assemblages of mixed or synthetic
answer choices; and 3) exclusively scientific answer choices.
Currently, many MC diagnostic and summative biology as-
sessments (and concept inventories) contain option types 1
and 3 (novice and expert, respectively), despite mounting
evidence in some biology domains that most students har-
bor “mixed models” of biological concepts (Nehm and Ha,
2011). Thus, MC formats (correct or incorrect options) appear
to be discordant with what we know about how students
learn science (NRC, 2001; Nehm and Schonfeld, 2008; Vosni-
adou, 2008). Thus, one advantage of open-response assess-
ments is that they allow students to assemble heterogeneous
knowledge elements and thereby reveal student thinking at
a much more fine-grained level than “novice versus expert”
assessments.

Perhaps the strongest argument for the inclusion of written
assessments in introductory biology is that MC formats are
not capable of measuring many desired learning outcomes
for introductory biology courses (AAAS, 2011); a diversified
assessment portfolio is needed to comprehensively capture
students’ learning progress (Corcoran et al., 2009). Indeed, in-
creasing emphasis has been directed at building assessments
that mirror authentic, real-world tasks, not just those that are
easily measured (NRC, 2001; Nehm et al., in press). Many
science education policy documents, for example, empha-
size the importance of having students generate and evalu-
ate scientific explanations (e.g., Benchmarks for Science Literacy

[AAAS, 1994]; the National Science Education Standards [NRC,
1996]; Taking Science to School [Duschl et al., 2007]; and Vision
and Change in Undergraduate Biology Education [AAAS, 2011];
Braaten and Windschitl [2011]). The ability to generate scien-
tific explanations can only be assessed using open-response
formats.

One final argument for the inclusion of open-response as-
sessments in introductory biology is that they better align
with most real-world experiences than do MC formats. In-
creasingly, college graduates are expected to perform non-
routine tasks that cannot be automated, digitized, or out-
sourced (Nehm et al., in press). From an educational point
of view, deploying assessment tasks that model authentic
problem-solving environments would help reinforce for stu-
dents which types of performances are most highly valued by
biology educators, and which types of evaluations they are
likely to experience postgraduation (e.g., production vs. se-
lection tasks). Overall, while MC assessments should remain
in biology educators’ assessment toolboxes, the many advan-
tages of open-response formats call for their greater inclusion.
Practical limitations have prevented the wider use of open-
response assessments, but recent technological advances are
beginning to change this situation.

Computer-Assisted Scoring Tools
The increasing use of computer-assisted scoring (CAS) in
many educational contexts has been motivated by the
numerous constraints that characterize human scoring of
constructed-response (e.g., short-answer, essay) items. Some
of the most obvious limitations are the large amounts of time,
money, and expertise needed to score such responses, and the
consequent delayed feedback to test takers (Nehm et al., in
press). A more serious issue with human scoring of written re-
sponses is the persistent problem of grading subjectivity and
consequent reliability threats; such problems are often intro-
duced by the need for many different human graders to score
large data sets, such as those generated in undergraduate
biology courses (Nehm and Haertig, in press). Moreover, dif-
ferently trained graders often disagree about the scores that
should be given to a response, requiring additional training
time to equalize scoring among raters. Reliable and consis-
tent scoring of constructed-response items cannot be solved
by having one human grader score all of the responses; grad-
ing fatigue and changes in scoring precision are well-known
limitations of human scoring (Nehm and Haertig, in press).
Thus, many long-standing problems have limited the use of
open-response formats.

Fortunately, the rapid pace of developments in computer
technology and text analysis software has made CAS tools
more economical and accessible to educators. Consequently,
many of the aforementioned limitations of human scoring
have been investigated empirically using a variety of dif-
ferent software tools. This work has demonstrated that com-
puter software can be “trained” to score constructed-response
items as accurately and reliably as human raters (Page, 1966;
Yang et al., 2002; Shermis and Burstein, 2003). Indeed, the
Educational Testing Service and many other large compa-
nies now employ CAS methods in large-scale, high-stakes,
standardized exams (Powers et al., 2002). Examples of these
CAS tools include C-rater (Sukkarieh and Bolge, 2008), E-
rater (Burstein, 2003; Williamson, 2009), and Intelligent Essay
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Assessor (Landauer et al., 2001). Less work has focused on us-
ing these or similar tools for formative assessment purposes.
Our research group has used two tools to perform CAS at
a smaller scale, specifically grading short-answer responses
within classes at individual universities: SPSS Text Analyt-
ics (SPSSTA; Urban-Lurain et al., 2010; Nehm and Haertig, in
press) and the Summarization Integrated Development Envi-
ronment (SIDE; Nehm et al., in press). SPSSTA is a commercial
software package sold by a private company (IBM), whereas
SIDE is a freely available software package distributed by
Carnegie Mellon University (Mayfield and Rosé, 2010a,b). Al-
though the performance efficacy of both computer programs
has been demonstrated using samples of undergraduate sci-
ence students (Ha and Nehm, 2011), the two programs differ
in the ways in which they approach CAS, as well as in the
methods used to perform scoring (for a review of these dif-
ferences, see Haudek et al. [2011] and Nehm et al. [in press]).
SIDE is capable of creating scoring algorithms automatically
when provided with a sufficiently large set of human-scored
data for training and validation of scoring algorithms. Be-
cause we had a large sample of human-scored, short-answer
responses for this study, our work on CAS was ideally suited
to using SIDE.

SIDE combines a natural language processing (NLP) en-
gine for parsing text, along with a set of machine-learning
algorithms for classifying text (see Witten and Frank [2005]
for more details). Analyzing text responses using SIDE has
two main steps: 1) defining the filters necessary for captur-
ing the structure of the text and 2) specifying the summaries
to be displayed and extracting the needed subsets (for de-
tails, see Mayfield and Rosé [2010a,b] and the supplemen-
tal material). Operationally, SIDE uses corpora of students’
constructed responses that have been scored by humans to
detect text patterns associated with the presence or absence
of particular scientific concepts as measured by expert raters.
For instance, terms such as “mutation,” “genetic change,” or
“change in DNA” are indicative of the presence of variation,
which is one of the key concepts necessary for explaining
evolutionary change (Nehm and Reilly, 2007). Student re-
sponses, and the associated expert scores, are used as input
to SIDE. Since we focused on five key concepts in this study,
we needed to input a set of human-scoring information on
whether or not the student text included a particular concept
or not for each of the five key concepts of evolution that we
investigated (see Human Scoring of Explanations of Evolutionary
Change).

SIDE provides a number of interactive tools for refining
and improving the accuracy of the predictions by allowing
the user to examine cases where the machine-learning model
misscored (either incorrectly classifying a response as con-
taining the concept when it does not, or failing to classify a
response as containing a concept when it in fact does). SIDE
can save the scoring model and apply it to new text to predict
human scoring (Mayfield and Rosé, 2010a,b).

In this study, we used initial data sets, which had been
scored by two biology experts, to train SIDE. We then used
new, expert-scored data to validate the accuracy of the SIDE-
scoring models. If this cross-validation approach is success-
ful, this provides evidence that we can predict human scor-
ing of new sets of student responses to the same questions
with as much confidence as we would have using human
raters.

Evolution: A Core Concept in Undergraduate Biology
Our investigations of CAS were focused on a core idea in
biology: evolutionary change (AAAS, 2011). A large body
of work, spanning more than 30 yr, has revealed a diverse
array of learning difficulties with evolution in general, and
natural selection in particular (reviewed in Nehm and Schon-
feld [2007] and Gregory [2009]). Much less research has fo-
cused on psychometric issues relating to the measurement
of student knowledge, although some work suggests that
open-response formats and clinical interviews more validly
capture student thinking about evolution than currently
available MC assessments (Nehm and Schonfeld, 2008;
Batistta et al., 2010; Nehm et al., in press). Thus, our inves-
tigation of the efficacy of CAS methods is well suited to the
topic of evolution. Improvement in the measurement of stu-
dents’ thinking regarding evolutionary change may help to
generate a deeper understanding of student learning difficul-
ties and inform improved instructional practice.

RESEARCH QUESTIONS

Our study explores three research questions:

1. Are scoring models built using machine learning general-
izable across colleges and courses (majors and nonmajors
at different universities)? In other words, do scoring mod-
els built using student responses at one school function
effectively at other schools?

2. How many human-scored student responses are needed
to effectively build scoring models? To what degree does
sample size impact computer-scoring success?

3. What factors limit computer-scoring efficacy, and how can
these factors be mitigated to enable scoring models to be
used in introductory biology courses across universities?

METHODS

Sample
To answer our research questions, we utilized three sam-
ples of undergraduate students enrolled in biology course-
work (Table 1): 1) nonmajors enrolled in introductory
biology at Ohio State University (OSU; 264 students/1056
written explanations); 2) nonmajors enrolled in introductory
biology at Michigan State University (MSU; 146 students/584
written explanations); and 3) biology majors enrolled in in-
troductory biology at MSU (440 students/1760 written ex-
planations). Student responses were gathered using two
online survey systems (ACS and LONCAPA; for details,
see www.evolutionassessment.org and www.lon-capa.org,
respectively).

We only included responses from individuals who com-
pleted four survey items each with responses of more than
five words. The number of participants in the OSU nonmajor
sample who completed all four items (see following section)
was 358 (77.7% of total participants). Given the significant
labor involved in scoring open-response items, we randomly
selected a subset of 264 students (1056 responses) from this
sample. We sampled the MSU data using the same approach
The number of participants in the MSU nonmajors sample
who completed all four items with more than five words was
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Table 1. Sample information

Ethnicity (%) Gender (%)

Institutiona Major Participants (n)b White Minority None mentioned Male Female Age

OSU Nonmajor 264 79.1 14.4 6.5 42 58 20.1
MSU Nonmajor 146 66.4 13.7 19.9 40 60 19.4
MSU Major 440 79.1 11.8 9.1 42 58 19.6

aOSU = Ohio State University; MSU = Michigan State University.
bNote that n refers to subsampled data sets (see Sample).

146 (90.7% of total participants). Finally, the number of par-
ticipants in the MSU biology major sample who completed
all four items with more than five words was 440 (90.0% of
total participants). Because of the time, money, and expertise
required to score student responses, we randomly selected a
subset of responses (n = 500) from each sample (OSU non-
majors, MSU nonmajors, and MSU majors; 1500 responses
total) for the first research question. For our second research
question, we scored more than twice as many responses from
the OSU corpus (n = 1056).

Items Used to Generate Explanations
of Evolutionary Change
Our response corpus was composed of student explanations
from four open-response items about evolutionary change.
This assessment format has been employed in biology edu-
cation research for more than 25 yr (e.g., Clough and Driver
[1986]) and has been shown to generate reliable and valid
inferences about students’ reasoning regarding evolutionary
change (Bishop and Anderson, 1990; Nehm and Schonfeld,
2008; Nehm and Ha, 2011). Instrument items were isomor-
phic (“How would biologists explain how a living X species
with/without small/large Y evolved from an ancestral X
species with/without large/small Y?”) but differed in spe-
cific taxa and traits (i.e., X and Y).

Assessment item features, such as trait functionality and
organism type, are known to influence students’ reasoning
regarding evolutionary change (Nehm and Ha, 2011; Opfer
et al., 2011). Consequently, we standardized our prompts to
include only animal examples and functional traits (e.g., fins,
wings). Moreover, because the familiarity of taxa and traits is
also known to influence students’ reasoning regarding evo-
lutionary change (Opfer et al., 2011), item taxa and traits were
constrained by their overall familiarity. To do so, we used
the frequencies of “organism + trait” in Google rankings as a
proxy for familiarity (Nehm, Beggrow, et al., in press). Specifi-
cally, taxon/trait combinations included: shrew incisors, snail
feet, fish fins, and fly wings.

Although students’ short-answer explanations of evolu-
tionary change varied in length, the average number of words
did not differ among items (analysis of variance [ANOVA], F
= 3.04, P > 0.01). Specific item lengths were 1) shrew: mean
= 45.5, SD = 30.3, minimum = 6, maximum = 430; 2) snail:
mean = 42.9, SD = 27.9, minimum = 6, maximum = 429; 3)
fish: mean = 42.5, SD = 26.3, minimum = 6, maximum = 202;
4) fly: mean = 41.6, SD = 26.5, minimum = 6, maximum =
209.

Human Scoring of Explanations
of Evolutionary Change
Undergraduate students are known to recruit a diverse array
of cognitive resources to build explanations of evolutionary
change and solve evolutionary problems (Nehm, 2010). These
resources may include, for example, well-structured scientific
schemas, such as natural selection; fragmented mental mod-
els built using mixtures of scientific and naı̈ve knowledge
elements; or naı̈ve explanatory models (Nehm and Ha, 2011).
Given such diversity, it is most practical for assessment pur-
poses to capture the existence of constituent explanatory ele-
ments in students’ explanatory models (cf. Nehm and Haer-
tig [in press]). For our study of automated computer scoring,
two trained human raters scored all student responses for five
key concepts of natural selection that were outlined by Nehm
and Reilly (2007), described by Nehm and Schonfeld (2008),
and codified in the scoring rubrics by Nehm et al. (2010a). It
is important to emphasize that these concepts are central to
the construct of natural selection, and necessary for explain-
ing the operation of natural selection (Nehm and Schonfeld,
2010). Thus, the elements selected for scoring are not trivial
or superficial aspects of reasoning regarding evolutionary
change, and are associated with explanatory competence,
as measured by clinical oral interviews (Nehm and Schon-
feld, 2008). These key concepts included: 1) the presence and
causes of variation (mutation, recombination, sex), 2) the her-
itability of variation, 3) competition, 4) limited resources, and
5) differential survival. It is important to note that scoring
of short-answer explanations was dominated by the recogni-
tion of collections of key terms and short phrases, rather than
elaborate grammatical expressions (see Nehm et al. [2010a]
for details). Nevertheless, scoring was performed such that
only accurate expressions counted for the “presence” of a
concept; students’ faulty expressions about heredity, for ex-
ample, would not count as the presence of the key concept of
heredity.

A series of studies has demonstrated that the coding rubrics
used to score the short-answer explanations of evolutionary
change are sufficiently clear to produce high levels of human
interrater scoring agreement with moderate training (Nehm
and Reilly, 2007; Nehm and Schonfeld, 2008; Nehm et al.,
2009a; Nehm et al. 2010b; Nehm and Ha, 2011; Nehm and
Haertig, in press; Nehm et al., in press). In past studies, kappa
agreement coefficients between human scorers with limited
training ranged from 0.69 to 0.95, with an average of 0.86
(e.g., Nehm and Haertig, in press). In the present study, two
biology experts (who have scored several thousand explana-
tions of evolutionary change and have used the rubrics of
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Nehm et al. [2010a] for more than 2 yr) evaluated all student
responses with very high agreement levels. The kappa relia-
bility coefficients (n = 1056) for the present study were: 0.995
for variability, 1.000 for heritability, 1.000 for competition,
1.000 for limited resources, and 0.988 for differential survival.
In the rare cases of disagreements between the two human
raters, consensus scores were reached via deliberation. These
final consensus scores were used in all subsequent analyses
of human–computer scoring correspondence.

Human–Computer Correspondence Measures
We used Cohen’s kappa to quantify the magnitude of
human–computer scoring correspondence (Bejar, 1991). Co-
hen’s kappa values range from 0.0 to 1.0, and are commonly
used to quantify levels of agreement among human raters,
or between human and computer rating scores (Landis and
Koch, 1977; Nehm and Haertig, in press). Landis and Koch
(1977) introduced three general agreement levels for kappa
statistics that we follow in our study: values between 0.41
and 0.60 are considered “moderate”; values between 0.61 and
0.80 are considered “substantial”; and those between 0.81 and
1.00 are considered “near perfect.” We also report specific
kappa values for all analyses, given the subjective nature of
these categorical distinctions.

ANALYSES

Our first research question explores SIDE performance at de-
tecting individual key concepts of natural selection in stu-
dents’ written responses. For each of our analyses, and for
each key concept, two categories of agreement statistics are
reported: 1) scoring-model training agreement values and 2)
scoring-model cross-validation agreement values. The training
agreement values are generated when SIDE first attempts to
construct a scoring model using the corpus of human-scored
student answers; that is, SIDE attempts to “learn” from the
human-scoring patterns and builds a computational model
that can account for these patterns. Then, SIDE examines the
efficacy of this scoring model by calculating how well the
model scores the same responses from which it learned. Kappa
and percentage agreement values (which are automatically
generated by the SIDE program) enable researchers to judge
the strength of the machine-learning model and consider
whether it is worthy of use on a new data set. In situations
where the training kappa values are “substantial” (> 0.60), the
SIDE-generated scoring model is then applied to a new corpus
of human-scored responses to determine whether the scoring
model functions effectively with a new response corpus (that
is, the training model is tested). Even if a training model per-
forms admirably, this does not necessarily mean that it will be
effective at scoring a new response corpus; both training and
cross-validation performances need to be evaluated. Model
cross-validation efficacy (also measured using kappa and per-
centage agreement statistics) must be performed manually (in
our case, using SPSS, version 19.0). Cross-validation kappa
values and percentage agreement values enable us to deter-
mine whether the SIDE-generated scoring models are likely
to effectively score additional student responses.

In addition to exploring training and cross-validation per-
formance of SIDE for each individual key concept, we also

explored composite measures of students’ explanations of
evolutionary change. Key concept score (KCS) is a composite
measure of the number of scientific concepts employed in an
explanatory context (Nehm and Reilly, 2007). Given that KCS
has been used in prior research on learning gains (Nehm and
Reilly, 2007), we examined how well SIDE performed rela-
tive to human expert scorers for KCS. Specifically, we used
Pearson correlation statistics (in SPSS, version 19.0) to test for
significant associations between human and computer scores
of both variables (in contrast to the single-concept agreement
statistics discussed above).

Our second research question examined to what degree
sample size influences SIDE scoring–model performance.
Specifically, we trained SIDE on two different corpora: 1) 500
responses from OSU students and 2) 1056 responses from
OSU students. We then tested the two different scoring mod-
els on 1) the MSU nonmajor response corpus and 2) the MSU
biology major response corpus. We calculated kappa and per-
centage agreement statistics to evaluate the influence of the
training-sample size on SIDE scoring–model performance.
All statistical tests were performed in SPSS, version 19.0.

Our third research question explored the factors that limit
SIDE scoring–model performance; that is, why, in some cases,
do scoring models fail to function at the desired near-perfect
(kappa values >0.80) agreement levels? Are such disagree-
ments the products of the students (majors, nonmajors) and
how they explain evolutionary change; the universities (OSU,
MSU); the sample sizes; the scoring models; or combinations
of these factors? This research question required examin-
ing all of the instances in which SIDE-generated scores and
human-generated scores did not match, and attempting to
identify the factors that contributed to score mismatches. Af-
ter locating the likely source of scoring disagreements, we
explored whether there were ways to mitigate these per-
formance limitations so that future work would be more
effective.

RESULTS

Students’ Explanations of Evolutionary Change
To provide readers with a sense of the types of explanations
of evolutionary change that undergraduate students’ gener-
ate, four unedited student responses were extracted from the
response corpus (see Table 2). As is apparent, student ex-
planations of evolutionary change vary in length (for details,
see Items Used to Generate Explanations of Evolutionary Change),
sophistication, scientific accuracy, and scientific complexity.
Adjacent to the responses in Table 2 are two columns indi-
cating the numbers and types of key concepts detected in
each response (see scoring methods, in Methods, for details).
Note that in the present study we investigated only the mag-
nitudes of accurately expressed scientific concepts in student
responses, not naı̈ve ideas or misconceptions. Computer scor-
ing of other explanatory elements is the focus of ongoing
research.

Testing the Impact of Training Corpus
on Scoring Success
Our first analyses explored whether training SIDE us-
ing different human-scored corpora had an impact upon
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Table 2. Selected examples of students’ written explanations of evolutionary change and corresponding human and computer scores

Taxon/trait/polarity Student’s explanation of evolutionary change
Human score
(number of key concepts)

Computer score
(number of key concepts)

Shrew incisors “Incisors may have developed on shrews due to a genetic
mutation [Variation]. An offspring of a normal shrew may
have had a mutated baby that had incisors, or some earlier
form of incisors. The incisors would have given the new
shrew an advantage in acquiring food [Limited resources]
and reproducing, so it would have a higher fitness
[Differential survival] leading the incisor trait to be passed on
to other generations [Heredity]. As the trait will then develop
with each generation due to variation involving the trait
and the levels of success attached to each variant.”

4 4

Snail feet “They would explain that once all the snails had small feet.
Then one day there was a mutation [Variation] that
produced a snail with a large foot. The snail with a large foot
was better able to produce more offspring [Differential survival]
in the environment passing on his trait [Heredity].”

3 3

Fish fins “There was a random change in the DNA sequence [Variation] of
the fish that coded for the production of the fin.
Nonrandom mating could have occurred with females
selecting males with fins as partners, which disrupts HW
equilibrium and leads to the evolution of the fin because the
fish with fin are better able to produce viable offspring
[Differential survival].”

2 2

Fly wings “The evolution of a fly species with a large wing from an
ancestral fly with small wings could be through the process
of natural selection or from a random mutation [Variation].”

1 1

scoring-model success (Figure 1). Six tests were performed
(Figure 1, A–F) for each key concept of evolution (e.g., varia-
tion, heredity, etc.). For the majority of these tests, the scoring
agreements reached or exceeded near-perfect kappa values
(18/30 tests) and percentage agreements above 90% (24/30
tests). Three key concepts—variation, heredity, and limited
resources—were detected at near-perfect levels regardless of
the training or cross-validation samples used. In contrast,
competition and differential survival were very sensitive to
training and cross-validation samples; in only two of the
12 tests did they reach near-perfect kappa agreement lev-
els (Figure 1, left). While raw percentage agreement values
were robust for four of the five concepts (the exception being
differential survival), these values do not take into account
chance agreements. The dramatic difference between these
two agreement statistics for competition suggests that sample
size is contributing to these patterns, as we discuss in Train-
ing Sample Sizes and Scoring Success. Overall, the most signifi-
cantfactor influencing the performance of the SIDE-generated
scoring models was not the training or cross-validation cor-
pus per se, but rather, concept-specific factors.

Concept Frequencies in Different Samples
As shown in Figure 2, human-identified frequencies of key
concepts (blue bars) are in close alignment with computer-
identified frequencies (red and green bars) for all samples (the
different rows: OSU nonmajors, MSU majors, and MSU non-
majors). In addition, different SIDE training sets (i.e., MSU
majors, MSU nonmajors) did not generate substantially dif-
ferent scoring frequencies of key concepts in comparison with
human-generated scores (compare the different colored bars
for each concept within each row). Small differences are ap-

parent, however, among scores for differential survival in the
OSU nonmajor sample (top row, right) and variation in the
MSU major and nonmajor sample (middle and bottom rows,
left).

One of the most striking patterns across all samples is
that introductory biology students rarely used the concept
of competition in their explanations of evolutionary change.
In contrast, differential survival was used by a majority of stu-
dents in all samples. Differences in the frequencies of key con-
cept use were also apparent between samples (compare the
rows in Figure 2): almost twice as many responses from the
MSU samples employed the concept of variation, compared
with the responses in the OSU samples (bottom two rows vs.
top row, left). In addition, MSU majors used the concept of
limited resources more often than the other groups. Overall,
Figure 2 demonstrates that differences in the frequencies of
particular concepts vary across samples and schools, but the
SIDE-generated scoring model was able to detect these differ-
ences. The extremely rare occurrence of competition (Figure
2) was associated with poor model performance for this con-
cept (Figure 1).

Training Sample Sizes and Scoring Success
Given that some key concepts were less common in the
training and cross-validation data sets than other concepts
(e.g., competition vs. variation), we investigated the impact
of sample size on scoring-model efficacy. For each key con-
cept (e.g., variation, differential survival) we performed two
experiments. In the first, we trained SIDE using 500 human-
scored responses from a sample of OSU nonmajors; and in
the second, we trained SIDE using a sample more than twice
as large: 1056 human-scored responses from OSU nonmajors.
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Figure 1. Magnitudes of agreement among human-
scored and computer-scored explanations of evolu-
tionary change from three samples (OSU, MSU non-
major, and MSU major). For each of the three samples:
n = 500 responses. Five key concepts of evolution-
ary change were examined separately (e.g., variation,
heredity). Arrows indicate which sample was used
to train the models and which sample was used to
test the models. Kappa values compensate for chance
agreements, whereas agreement values are raw per-
centages. (A) OSU sample model training and MSU
sample nonmajor model cross-validation; (B) MSU
nonmajor sample model training and OSU sample
model cross-validation. (C) OSU sample model train-
ing and MSU nonmajor model cross-validation. (D)
MSU major sample model training and OSU sample
model cross-validation. (E) MSU major sample model
training and MSU nonmajor model cross-validation.
(F) MSU nonmajor model training and MSU major
sample cross-validation.

Figure 2. Frequencies (0–100%) of key concepts
among samples and between human- and computer-
generated scores. Blue bars = human-detected fre-
quencies; red bars = frequencies detected using the
MSU major computer-generated scoring model; and
green bars = the frequencies detected using the
MSU nonmajor computer-generated scoring model.
In each of the three samples (OSU nonmajor; MSU
major; MSU nonmajor), 500 responses were used. Er-
ror bars represent the SEM.
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Figure 3. Cross-validation of the impact of training sample size on model performance. Four samples were used in the analysis (OSU
nonmajors: n = 500; OSU nonmajors: n = 1056; MSU nonmajors: n = 500; and MSU majors: n = 500). Five key concepts of evolutionary change
were examined separately (e.g., variation, heredity). Arrows indicate which sample was used to train the models and which sample was used
to test the models. Kappa values compensate for chance agreements, whereas agreement values are raw percentages. (A) OSU sample (n =
500) training and MSU sample nonmajor cross-validation. (B) OSU sample (n = 1056) training and MSU sample nonmajor cross-validation. (C)
OSU sample (n = 500) training and MSU major cross-validation. (D) OSU sample (n = 1056) training and MSU sample major cross-validation.

The two resulting SIDE-generated scoring models were ap-
plied separately to: 1) a corpus of MSU nonmajors’ written
explanations and 2) a corpus of MSU biology majors’ writ-
ten explanations (see Methods). As above, kappa agreement
statistics and raw agreement percentages were calculated
for all comparisons. Figure 3 illustrates the results of both
experiments.

The scoring models built from the larger corpus produced
higher correspondences with expert human raters in nine
out of 10 tests; the exception was competition in the MSU
biology major sample (Figure 3). Given that the smaller train-
ing corpus (n = 500) produced near-perfect correspondence
with human raters in most tests, doubling the training size
bumped only one concept—competition in the MSU nonma-
jor sample—to the desired benchmark (kappa > 0.80). Al-
though the larger corpus did improve model performance
for differential survival (Figure 3), in many cases it did not
meet our benchmark using either training corpus (n = 500
or 1056). In terms of raw percentage agreements, the larger
corpus did not always produce improved results; in fact,
the smaller corpus in many cases produced slightly higher
agreement percentages. Nevertheless, in tests of model per-
formance, 17 out of 20 comparisons of computer and hu-
man agreement reached or exceeded 90%. Additionally, us-
ing the large training data set, 9/10 analyses produced re-
sults that were detected at or above the kappa benchmark
of 0.80.

Overall, in nearly all cases, doubling the training corpus im-
proved model performance, but not substantially. The most
dramatic improvement was seen in the detection of compe-
tition in the MSU nonmajor sample. Thus, the frequencies of
particular concepts in the training corpus must be considered,
not just overall sample size (see Figure 2 “Human scoring”).

Explanatory Structures
In addition to comparing individual key concept detection
between human- and computer-scored explanations, it is use-
ful to examine how students collectively assemble these con-
cepts into explanatory structures (Figure 4). One approach
for representing these explanatory interrelationships is to use
concept-association diagrams (Nehm and Ha, 2011). Figure
4 illustrates both the frequency (the size of the circles) and
co-occurrences of concepts (the thickness of the gray lines) in
students’ explanations of evolutionary change. For instance,
approximately 20% of OSU nonmajors used both concepts of
variation and differential survival in their responses (see con-
necting lines in Figure 4). Each row in Figure 4 compares ex-
planatory structures between human expert raters (left) and
SIDE-scoring patterns (right) for a particular student sample
(e.g., top: OSU nonmajors; bottom: MSU biology majors). As
is apparent from the figure, results for students’ knowledge
networks are remarkably similar, regardless of whether they
were scored by humans or computers.
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Figure 4. Holistic patterns of human–computer scoring correspondence (each row), taking into account all five key concepts. Circle sizes
represent the frequencies of concepts; gray bars indicate the percentages of concept co-occurrence. D = differential survival; V = variation; H
= heredity; R = limited resources; C = competition.

Comparing the columns in Figure 4 also reveals that
SIDE-generated scoring models can detect different explana-
tory structures across student samples, and these patterns
closely mirror the findings reported in Figure 2. The human-
generated scores, for example, demonstrate that MSU majors
and nonmajors used the concept of variation much more fre-
quently than OSU nonmajors. SIDE produced the same pat-
terns. Interestingly, human scorers also determined that MSU
nonmajors used the concepts of variation and heredity more
frequently than MSU majors; SIDE detected these patterns.
MSU biology majors used the concept of limited resources
much more frequently than MSU nonmajors, and this is also
indicated in the SIDE-generated scores. While differences in
the explanatory structures among majors, nonmajors, and in-
stitutions are interesting, the important point we wish to em-
phasize in Figure 4 is that SIDE-generated scores, which took

minutes to generate, are in remarkable alignment with the
patterns generated by humans during weeks of painstaking
grading.

In addition to examining patterns of correspondence be-
tween human- and computer-generated visual representa-
tions of explanatory structure, Nehm and Reilly (2007) used
KCS to quantify the number of different scientifically ac-
curate evolutionary concepts that students use to explain
evolutionary change in a prompt. Table 3 illustrates statis-
tically significant (P < 0.001) and robust (r = 0.79 to 0.87)
associations between human- and computer-generated KCS
for all comparisons. Thus, using approaches for measuring
student knowledge of evolution previously established in
the literature (Nehm and Reilly, 2007; Nehm and Ha, 2011),
SIDE-generated scoring models produce patterns equivalent
to those derived from human raters.
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Table 3. Correlation coefficients between human-scored and SIDE-
scored student explanations for KCSa

Training sample Testing sample
Human vs. SIDE KCD
correlation (**P < 0.001)

OSU nonmajor
(n = 500)

MSU nonmajor
(n = 500)

0.79**

MSU nonmajor
(n = 500)

OSU nonmajor
(n = 500)

0.80**

OSU nonmajor
(n = 500)

MSU major
(n = 500)

0.87**

MSU major
(n = 500)

OSU nonmajor
(n = 500)

0.85**

MSU major
(n = 500)

MSU nonmajor
(n = 500)

0.82**

MSU nonmajor
(n = 500)

MSU major
(n = 500)

0.82**

aIn all cases, associations were strong and significant (P < 0.001). KCS
represents the number of different scientific concepts in a prompt. For
details, see Methods and Nehm and Reilly (2007).

Factors Limiting Computer-Scoring Success
Although SIDE and its machine-learning algorithms were
shown to be highly effective at scoring the accuracy and
complexity of undergraduates’ explanations of evolutionary
change, our studies revealed several limitations, which are
summarized in Table 4. The key factors that limited the ef-
ficacy of computer scoring included: misspellings; nonadja-
cent key terms; very uncommon concept frequencies; and
the diversity of expressions that students used to represent
particular concepts.

Spelling and spacing errors produce human–computer
score disagreements. While our human raters easily un-
derstood what students were attempting to explain when
they wrote “preditor” [predator], the computer was not able
to do so. Misspelled words such as “servive” [survive],
“springoffs” [offspring], and “foodso” [food so] also pro-
duced misclassifications in our study (see Table 4).

We also found that when student responses included key
terms suggestive of a concept, but the words constructing
the concept were scattered throughout the written response

Table 4. Examples of the types of disagreements between human-scored and computer-scored explanationsa

Scoring pattern Category Examples 1 to 5 Solution

Positive computer score
but negative human
score

Many key terms used,
but important aspects
were missing

(1) “The original Shrew, who didn’t have incisors, may
have not been a fit species. Meaning, they may have
not been reproducing enough to pass on their traits.
Another reason would be a mutation that survived.
What I mean is that a few shrews may have
developed an allele mutation that resulted in the
shrews developing incisors. After the mutation, it
was passed on and probably survived because of
natural selection, sexual selection, or artificial selection
[more fit, survive and reproduce more].”

Put a weight on core
terms

Key terms not adjacent,
but scattered
throughout the
response

(2) “For the fly species with wings to survive through
natural selection it had to evolve to a species without
wings. The wings of the fly were no longer needed so
over time they grow smaller and weaker and
eventually they no longer appeared in the offspring
[survive longer].”

Human augmentation of
SIDE-scoring models

Negative computer score
but positive human
score

Very uncommonly used
expression

(3) “The fish was filling a niche in an area that required
a fish with smaller fins. Generations passed and a
mutant gene for a fish with smaller fins did well and
its offspring did well through time a new species was
born.”

Increase concept
frequencies in training
sample; human
augmentation of
SIDE-scoring models

Complex expressions (4) “Variation of living fish species may leads [sic] to
random mutation. It creates new sequences of DNA
that will code for new or different protein. This protein
help[sic] in the creation of a new living fly species with
wings in this situation. This species then reproduce [sic]
and evolve through some time. It may help to explain
how a new living fly species with wings evolve [sic]
even though it is originally from an ancestral fly
species that lacked wings.”

Human augmentation of
SIDE-scoring models

Spelling errors and
spacing errors

(5) preditor [predator], servive [survive], springoffs
[offspring], foodso [food so]

Incorporate a spell-check
program during data
collection

aCategories: types of scoring problems; examples: specific student responses; solutions: approaches used to correct the computer–human
disagreement.
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(conveying a very different meaning), the SIDE-scoring mod-
els often mistakenly linked these words together and consid-
ered the concept to be present. For example, in Table 4, exam-
ple 2, the scoring model identified text elements characteristic
of the concept of differential survival (“survive longer”) to be
present, even though the response included the words “sur-
vive” and “longer” in separate sentences.

Complex expressions, or very long sentences, also posed
problems for the software. For example, one student (cor-
rectly) explained differential survival in the following way:
“the fish with large fins is not suitable for the living envi-
ronment in that specific area, so the fish with smaller fins
survive and reproduce.” Because expressions like this were
rare in the student response corpora, and did not contain ex-
plicit language about differential survival, the scoring models
failed to detect them. Fortunately, expressions like this were
uncommon in the samples.

Low concept frequencies also prevented the machine-
learning algorithm from building successful scoring models;
without enough positive cases to analyze, the computer failed
to annotate new cases appropriately. Competition serves as
an example of a concept that was very rarely used by stu-
dents to explain evolutionary change; only about 10 instances
of competition were found among 500 written explanations.
In addition to low concept frequencies, unusual expressions
also lead to misclassifications. The term “mutant gene,” while
clearly identifiable as a “cause of variation” by a biologist, was
too rare to be incorporated into the scoring models (Table 4).

We found that the concept of differential survival was in-
fluenced by the frequencies with which particular samples
used particular terms. While the kappa values between scor-
ing models built using the OSU nonmajor and the MSU major
sample were nearly 0.80 (near-perfect), the kappa values be-
tween scoring models built by the OSU nonmajor and MSU
nonmajor samples and between the MSU major and MSU
nonmajor samples did not meet this benchmark (0.60). The
cause of this pattern appears to be that the language patterns
that MSU nonmajors used were somewhat different from the
language patterns that the OSU nonmajor and MSU major
samples used to describe differential survival. For example,
the term “differential” (such as “differential reproduction
rate” or “differential survival success”) was observed 12 times
among 500 responses in MSU nonmajor sample, whereas the
term “differential” was observed only three times among 500
responses in the OSU nonmajor sample and only once among
500 responses in the MSU major sample. Consequently, the
program incorporated “differential” as a diagnostic term for
the MSU nonmajor scoring model, but not for the other
samples.

DISCUSSION

While CAS is becoming increasingly common throughout the
educational hierarchy (Nehm et al., in press), biologists have
been slow to make use of this technological innovation. Two
recent studies by Nehm and Haertig (in press) and Nehm et al.
(in press) tested the efficacy, respectively, of SPSSTA, version
3.0 (Galt, 2008) and SIDE (Mayfield and Rosé, 2010a,b). Using
large samples of undergraduate biology students in single
classes at one university, they demonstrated that both of these

analytical tools are capable of generating assessment scores
equal in precision to those by trained, expert raters (biologists
with PhDs). Overall, Nehm et al. (in press) suggested that
when clear scoring rubrics have been developed, and student
ideas on a particular topic are well established, SIDE is much
more powerful and cost effective than SPSSTA (Haudek et al.,
2011; Nehm et al., in press). Since both of these factors apply
to our present study, we chose SIDE as our CAS tool. For
biologists who have not developed robust grading rubrics, or
who have not comprehensively investigated student thinking
about a topic, SPSSTA will be a more appropriate starting
point (Haudek et al., 2011).

Prior studies of SIDE did not investigate several questions
that arise when biologists apply scoring models beyond a
single instructor, course, or college. First, are scoring mod-
els generalizable across colleges and courses (e.g., major vs.
nonmajor)? That is, will successful scoring models built at
one university work at another? Second, how much human
scoring is needed to build a robust scoring model, and can
human scoring of additional student responses compensate
for scoring-model limitations across courses and colleges?
Finally, what factors might account for scoring models that
function effectively in a class at one university but fail at a
similar class in another? Can these failures be fixed?

It is important to emphasize that CAS tools—including ma-
chine learning—are not capable of comprehending the mean-
ings of students’ lexical responses. Programs such as SIDE
simply note the presence or absence of particular words (or
word pairs) in response corpora, build large matrices of word
combinations, and apply sophisticated machine-learning al-
gorithms to predict human-scoring patterns (Mayfield and
Rosé, 2010a,b). Consequently, machine-learning tools are
very sensitive to language, but not its meaning(s). Expert hu-
man raters, in contrast, can effortlessly comprehend diverse
linguistic expressions and understand their equivalence (e.g.,
“some live and some die” is equivalent to “differential sur-
vival”); in contrast, computers view different text as indica-
tive of different information. For this reason, mundane text
differences, such as spelling (color vs. colour; fecundity vs.
fedunctity [sic]) impact scoring-model success.

Depending upon the scientific key concept for which a scor-
ing model is built (e.g., variation, differential survival, etc.),
different lexical expressions are used in different frequencies.
Indeed, different populations of students—such as biology
majors and nonmajors—may use characteristically different
linguistic expressions to represent biological concepts. Some
word combinations in some samples will be more diagnos-
tic and predictive of key concepts than in others. Because of
these concept-specific and sample-specific issues, we discuss
our specific results relating to sample source (university; ma-
jors vs. nonmajors) and sample size (500 responses vs. 1056
responses) separately for each concept for which a scoring
model was developed: variation, heredity, competition, and
differential survival.

For key concept 1, variation, we found that SIDE scoring–
model success was not sensitive to sample source (Figure
1). That is, regardless of which response corpus was used to
train SIDE (i.e., OSU vs. MSU students; majors vs. nonma-
jors), the scoring models generated excellent agreement with
trained expert raters and near-perfect kappa values (> 0.80).
However, we did find that scoring models for variation were
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somewhat sensitive to sample size (that is, whether 500 or
1056 responses were used to build the scoring models). In
comparison with the key concept of heredity, for example, in
which a doubling of the training-sample size had almost no
impact upon kappa values (adding 0.04 to 0.05), a doubling of
the sample size for variation produced meaningful increases
in kappa values (adding 0.14 to 0.80).

The explanation for the increase in kappa values with in-
creasing training sample size for variation (but not heredity)
appears to be related to the diversity and frequency of linguis-
tic expressions that students used to represent these biological
concepts. Although the most common term used by students
to represent variation was “mutation,” various other terms
were also used, such as “different alleles,” “genetic change,”
or “error in DNA.” If only a few students used particular
written expressions when linguistically representing the con-
cept of variation (such as “genetic makeup”), then such ex-
pressions would be unlikely to be included in the machine-
learning model, and downstream disagreements between
human and computer scores would result. The frequencies
of particular expressions, and their associations with other
terms, influence scoring-model success. Indeed, we found
that doubling the training sample for variation increased the
frequencies of particular terms to a threshold at which they
were included in the scoring models, producing improved
kappa agreement statistics. For example, the matrix included
268 words for the n = 500 sample, while the matrix included
386 words for the n = 1056 sample. Matrix size is associated
with differences in scoring-model performances.

For the concept of heredity, computer-scoring success was
very stable and very successful regardless of sample size or
source (Figures 1 and 3). Biology majors and nonmajors from
different colleges and classes appear to use a consistent and
detectable array of linguistic expressions to represent hered-
ity concepts (e.g., Table 1).

The third concept we investigated was competition. Unlike
the previous results, computer-scoring success for competi-
tion was sensitive to both sample source and sample size
(Figures 1 and 3). Given our findings for variation and hered-
ity, this result is surprising; the Nehm et al. (2010a) scoring
rubric indicates that a very small set of terms is typically used
to detect competition (e.g., compete, competition, competes).
When we examine the frequency of students who used this
concept, we find that only 1–2% of students used competition
in their explanations of evolutionary change. Indeed, only 10
to 20 responses (out of 1000) included linguistic expressions
relating to competition. Statistically, the probability that the
algorithm will include such rare occurrences is low. Two so-
lutions may be used to tackle the problem of rare responses:
first, to amass a larger corpus of responses; or second, to use
a special function in SIDE that allows users to augment the
model and weight particular terms (see Nehm et al. [in press]
for details). It is difficult for SIDE to build scoring models for
extremely rare concepts.

The next concept we studied was limited resources. We
found that the scoring models for this concept were stable
in relation to both sample source and sample size (Figure
3). Kappa values were near-perfect (> 0.80) for the small data
sets (n = 500) across samples, although there were some minor
deviations. Overall, regardless of course or college, it appears
that students commonly use consistent language patterns to

represent this evolutionary concept, and scoring models for
this concept work very well.

The final concept that we studied was differential survival.
Similar to our findings for competition, differential survival
was sensitive to both sample source and sample size. The
comparatively weak performance of the differential survival
scoring models was not a result of low response frequencies
(as we observed with competition); large percentages of stu-
dents utilized this idea in their explanations of evolutionary
change (e.g., 60.3%; Figure 2). Scoring problems in this case
were a product of students’ highly variable language use. This
is in line with the scoring rubrics of Nehm et al. (2010a), which
were built using different student samples and also note the
diverse expressions with which students represent this evo-
lutionary concept (e.g., “increase their survival,” “survived
better,” “the species dies while others survive”). Because we
also found that SIDE-scoring models were sensitive to sample
source, different linguistic expressions may have been related
to instructor discourse patterns. If, for example, students are
imitating instructors’ language (cf. Nehm et al. [2010b]), and
different instructors use different phrases to represent biolog-
ical ideas, then the sample source will impact scoring-model
efficacy (as we found). Although the scoring model built us-
ing the largest sample (n = 1056) demonstrated relatively
good kappa values (e.g., 0.69, 0.89; see Figure 3), the highly
variable ways of communicating the concept of differential
survival appears to have limited scoring-model performance.

Generalizing Our Findings to Other Samples and
Populations
Very few studies in biology education have examined the
similarities and differences between different student popu-
lations’ short-answer explanations of biological phenomena,
including evolutionary change. In two studies of primarily
underrepresented biology students (many of whom were
English-language learners) from a minority-serving institu-
tion in the eastern United States, Nehm and Reilly (2007) and
Nehm and Schonfeld (2008) used short-answer, constructed-
response assessments similar to those in the present study
to reveal students’ thinking patterns regarding evolution-
ary concepts. Nehm and Schonfeld (2008) reported that their
findings were generally similar to those of primarily white
student populations documented in the literature. Our cur-
rent findings—from primarily white, midwestern undergrad-
uates in large, public, research universities—are also very
similar to those documented in these prior studies (see Table
1). This suggests that undergraduate biology students, re-
gardless of racial and ethnic background, may utilize a large
but relatively constrained set of concepts when conceptu-
alizing evolutionary change. Nevertheless, such conjecture
should be tested using diverse student samples from differ-
ent geographic regions of the country. Until such work is
completed, we cannot with confidence argue that machine-
learning tools will be effective for assessing all introductory
biology students.

Implications for Introductory Biology Faculty
Our study has produced robust, automated, and generaliz-
able scoring models capable of detecting most (but not all) of
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the core evolutionary concepts emphasized in standards doc-
uments, curricula, and textbooks (Nehm et al., 2009b). Biology
educators can make use of our work by downloading the free
software package SIDE (see Mayfield and Rosé, 2010a,b) and
incorporating our scoring models (freely available from the
senior authors) to evaluate their students’ written explana-
tions of evolutionary change. Using a PC computer with an
i7 processor, scoring 1000 written responses takes seconds to
a few minutes (depending on the concept) and produces high
levels of accuracy that are comparable with consensus scores
generated by two trained biologists (see Figure 4).

In addition to a user’s manual (Mayfield and Rosé,
2010a), and details on the workings of SIDE (Mayfield
and Rosé, 2010b), learning how to use SIDE is illus-
trated in a series of video tutorials (freely available at
http://evolutionassessment.org). Given that this emerging
form of assessment research is new, it is important to em-
phasize that the software is not packaged in a user-friendly
format, and like other technological tools (e.g., clickers, new
operating systems, new software), effort is required to learn
to use it.

Our research to date has only validated a small set of biolog-
ical concepts, and introductory biology instructors are likely
to want to know how their students interpret a broader array
of concepts in evolution (and other content areas). We are
continuing to build scoring models for other concepts, such
as naı̈ve ideas or misconceptions of evolution (Ha and Nehm,
unpublished results). We speculate that improved technology
and advanced research on machine-learning assessment will
enable more and more concepts to be detected in students’
written responses.

National partnerships among introductory biology educa-
tors could make future work on machine learning more effi-
cient and cost effective. Indeed, all biology educators, regard-
less of whether they view automated scoring as beneficial or
not, could help move the field forward by collecting large
corpora of students’ written responses to different prompts
across subject areas (genetics, matter and energy transforma-
tion, cell biology; Haudek et al., 2011); this would help those
researchers interested in using and refining machine-learning
methods. Additionally, faculty from minority-serving institu-
tions, or those teaching large English language–learning pop-
ulations, are needed to expand our knowledge base on how
scientific language is used to communicate core concepts in
biology.

Perhaps the most significant implication of our work for
introductory biology educators is that evaluating students’
written work, especially in large classes, is not impossible.
This is significant from an assessment standpoint, as we
contend that the process of asking students to communi-
cate their understanding of scientific phenomena is a worth-
while activity, regardless of whether automated methods
will be employed to assess these responses (e.g., Chi et al.
[1994]). When analyzing students’ written responses, we have
been surprised by students’ limited capacity to communi-
cate and explain core scientific concepts (such as evolution)—
particularly those students who perform admirably on MC
assessments (cf. Nehm and Schonfeld [2008]). Without pro-
viding students practice and feedback in communicating
their scientific understanding, we cannot expect this situa-
tion to improve.

Future work is needed to expand our concept of what con-
stitutes a sound explanation of evolutionary change. Quan-
tifying students’ use of necessary and sufficient scientific el-
ements (key concepts) as a benchmark for competency, as
we have done, captures only one facet of short-answer scien-
tific explanations (cf. Braaten and Windschitl [2011]). Logic,
persuasion, and argumentation skills are also important di-
mensions of scientific explanation, but they were not inves-
tigated in our study. Expanding our assessment framework
will likely stimulate discussions about what facets of scien-
tific explanation are most important for fostering scientific
literacy.

Implications for Biology Education Researchers
Research in the use of machine learning (and text analysis
in general) in biology education is only beginning (Haudek
et al., 2011; Nehm and Haertig, in press; Nehm et al., in press);
much remains to be learned. A community of practice on text
analysis in STEM education has recently been established (see
Haudek et al. [2011] and http://aacr.crcstl.msu.edu), provid-
ing a forum for researchers interested in learning more about
these innovative assessment methods. Our current study has
uncovered several findings likely to be of interest to re-
searchers motivated to pursue this line of work.

First, even though we collected large response corpora,
some concepts were nevertheless quite rare, limiting model
performance. A large sample (n = 500) does not guarantee
high concept frequency. In many instances, we were sur-
prised by which concepts were used by students (and which
were not). Second, we documented several factors that caused
problems for machine-learning methods (e.g., misspellings;
linguistic diversity) that nevertheless can be addressed by
using a spell-checker during data gathering and weighting
text expressions prior to analysis. Third, the diversity of lin-
guistic expressions associated with concepts was highly vari-
able (and generally unpredictable a priori), impacting scoring
success. Some concepts were easily detected by the software,
whereas others were not. Overall, the process of building au-
tomated scoring models is effortful and requires clear scoring
rubrics and thousands of carefully evaluated responses.
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